Dimorphism of Hydrothermal Synthesized Copper Tellurite, $\mathrm{CuTeO} \mathbf{O}_{3}$: The Structure of a Monoclinic Representative

F. PERTLIK
Institut für Mineralogie und Kristallographie der Universität Wien, Dr. Karl-Lueger-Ring 1, A-1010 Vienna, Austria

Received October 14, 1986; in revised form January 15, 1987

Abstract

The crystal structure of monoclinic $\mathrm{CuTeO}_{3}\left(\mathrm{CuTeO}_{3}-\mathrm{II}\right)$ was determined by direct methods and Fourier summations from single-crystal X-ray data ($a=5.214(1) \AA, b=9.108(2) \AA, c=5.965(1) \AA, \beta$ $=95.06(1)^{\circ}$; space group $P 2_{\mathrm{l}} / n-C_{2 h}^{5} ; Z=4 ; R=0.035$). The Cu atom is $[4+1]$ coordinated and the Te atom $[3+2]$ coordinated to oxygen atoms. Each two CuO_{4} "square" is combined via a common $\mathrm{O}-\mathrm{O}$ edge to formal $\mathrm{Cu}_{2} \mathrm{O}_{6}$ groups, which are moreover combined by the fifth $\mathrm{Cu}-\mathrm{O}$ bond to formal CuO_{3} sheets parallel to (010). The connection of the coordination polyhedra around the Cu and Te atoms results in a framework. CuTeO_{3}-II was synthesized under hydrothermal conditions at 500 (5) K . A comparison with $\mathrm{CuTeO}_{3}-\mathrm{I}$ (orthorhombic) based on crystal chemistry is given. © 1987 Academic Press. lnc.

Introduction

The investigation of the crystal chemistry of tellurium(IV)-oxygen compounds is one of the working topics at the Institut für Mineralogie und Kristallographie der Universität Wien (1-4). Recent studies concerning the syntheses of copper-bearing tellurites under hydrothermal conditions yielded a new compound which was identified to be a monoclinic modification of CuTeO_{3}. Single crystals were quite suitable for a structure determination.

Recently Lindqvist (5) published the crystal structure of an orthorhombic modification of CuTeO_{3}, which was synthesized by Moret et al. (6) under hydrothermal conditions at 623 K . Later on Spiridonov (7) reported about the natural occurrence of this compound (mineral name: balyakinite). For distinction in the present paper this
orthorhombic compound is denoted as CuTeO_{3}-I, whereas the monoclinic one is denoted as $\mathrm{CuTeO}_{3}-\mathrm{II}$. For comparison of the two modifications the data for $\mathrm{CuTeO}_{3}-\mathrm{I}$ given by Lindqvist (5) were used.

Experimental

The compound CuTeO_{3}-II was synthesized by a hydrothermal treatment of 1 g of an equimolar mixture of elementary Te (powder) and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in a Teflonlined reactor. The volume of the reactor (6 cm^{3}) was filled up to about 80% with an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ (approximately 1 M). A temperature of $500(5) \mathrm{K}$ was maintained for 100 days. After cooling to room temperature during 10 hr , the following solid reaction products were obtained: $\mathrm{CuTe}_{2} \mathrm{O}_{5}(8,9)$, bluish green short prismatic crystals of $\mathrm{Cu}_{7}(\mathrm{OH})_{6}\left(\mathrm{TeO}_{3}\right)_{2}$

TABLE I
Summary of Crystal Data, Data of Intensity Measurements and Crystal Structure Refinement for CuTeO_{3}-II

$a=5.214(1) \dot{A}$	Graphite monochromatized MoKa radiation
$b=9.108(2) \AA$	Crystal dimension: $0.06 \times 0.15 \times 0.09$ mm^{3}
$c=5.965(1) \AA$	$20 / \omega$ scan mode with a step width of 0.03°
$\beta=95.06(1)^{\circ}$	Steps/reflection: $40+\left(\alpha_{1}, \alpha_{2}\right)$ splitting
$V=282.2 \AA^{3}$	Time/step: 0.5 to 1.5 sec
$Z=4\left\{\mathrm{CuTeO}_{3}\right\}$	Range of data: $2^{\circ}<2 \theta<70^{\circ}$
Space group: $P_{2} / n-C_{2 h}^{5}$	Total No. of measured reflections: 2630
$\begin{aligned} & \rho_{\mathrm{cak}}=5.63 \mathrm{~g} \cdot \mathrm{~cm}^{-3} \\ & \mu(\mathrm{MoK} \alpha)-177 \mathrm{~cm}^{-1} \end{aligned}$	No. of independent reflections: 1250 Internal, $R_{\text {int }} 0.058$
No. of variables: 47	Reflections with $F_{0}>3 \sigma_{F_{0}}: 1143$
R: 0.035	3 standará reflections
$R_{W}: 0.031 ; W=1 /\left[\sigma\left(F_{0}\right)\right]^{2}$	Secondary extinctipn (17): $2.2(1) \times 10^{-5}$

Note. Stoe four-circle diffractometer; program system STRUCSY (Stoe \& Cie, Darmstadt, FRG) on an Eclipse S 140 at room temperature.
$\left(\mathrm{SO}_{4}\right)_{2}$, and green prismatic crystals of CuTeO_{3}-II, elongated parallel to [010]. $\mathrm{CuTe} 2_{2} \mathrm{O}_{5}$ was identified by an X-ray powder pattern. The chemical formulas of the last two compounds were determined by a combination of quantitative X -ray spectrometer analysis and structure determination.

The accurate 2ϑ values for the lattice parameter determination (39 reflections) as well as the X-ray intensity data of $\mathrm{CuTeO}_{3}{ }^{-}$ II were collected with a Stoe AED-2 fourcircle diffractometer (Table I). The intensities were corrected for absorption (empirical ψ scans of three reflections, min and max absorption correction coefficients: 0.10 and 0.32) as well as for Lorentz and polarization effects. The crystal structure
was derived by a direct method and Fourier summations. Atomic coordinates and thermal parameters of all atoms were fit by least-squares techniques. The results are listed in Table II. Complex scattering functions for neutral atoms, used in all calculations, were taken from (10). Some selected interatomic distances and bond valences (11) are given in Table III.

Discussion

In CuTeO_{3}-II the Cu atom has four nearest O atom neighbors $(\mathrm{Cu}-\mathrm{O}<2.0 \AA)$ arranged in a distorted CuO_{4} "square." Two such squares are connected via a center of symmetry by a common $\mathrm{O}-\mathrm{O}$ edge (atoms $O(1)$, resp., $\mathrm{O}\left(1^{\prime}\right)$) to formal $\mathrm{Cu}_{2} \mathrm{O}_{6}$ groups. The angle $\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}\left(1^{\prime}\right)$ with 81.2° and the edge $\mathrm{O}(1)-\mathrm{O}\left(1^{\prime}\right)$ with $2.57 \AA$ represent the smallest values found in the Cu coordination polyhedron. It should be mentioned that one of the two $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles between opposite O atoms within the CuO_{4} square is only 156.2°, whereas the other one measures 176.9°. In addition the Cu atom has a fifth O atom neighbor ($\mathrm{Cu}-\mathrm{O}=2.43$ \AA), which completes the Cu polyhedron to a tetragonal pyramid. The further connection of these $\mathrm{Cu}^{[4+1]} \mathrm{O}_{5}$ coordination polyhedra over common oxygen atoms results in formal CuO_{3} sheets parallel to (010).

The coordination figure of the Te atom by O atoms is obviously caused by the lonepair electrons as characteristic for the oxi-

TABLE II
The Final Positional and Thermal Parameters for CuTeO_{3}-II

Atom	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Cu	$0.7425(1)$	$0.5187(1)$	$0.3695(1)$	$0.0085(3)$	$0.0111(2)$	$0.0098(2)$	$-0.0012(2)$	$0.0005(2)$	$0.0023(2)$
Te	$0.7576(1)$	$0.2025(1)$	$0.5995(1)$	$0.0077(1)$	$0.0088(1)$	$0.0069(1)$	$-0.0006(1)$	$0.0010(1)$	$0.0003(1)$
$\mathrm{O}(1)$	$0.9099(7)$	$0.3929(4)$	$0.6096(6)$	$0.0104(13)$	$0.0102(13)$	$0.0140(14)$	$0.0008(13)$	$-0.0015(10)$	$0.0007(12)$
$\mathrm{O}(2)$	$0.9360(7)$	$0.1370(4)$	$0.3609(6)$	$0.0099(14)$	$0.0192(15)$	$0.0091(13)$	$-0.0012(14)$	$0.0055(9)$	$-0.0033(12)$
$\mathrm{O}(3)$	$-0.0092(7)$	$0.1396(4)$	$0.8482(6)$	$0.0123(14)$	$0.0127(13)$	$0.0084(13)$	$0.0048(12)$	$-0.0018(10)$	$-0.0008(11)$

Note. All atoms at general positions of space group $P 2_{1} / n$. The anisotropic temperature factors are given in the form $\exp \left(-2 \pi^{2} \Sigma_{i=1}^{3} \Sigma_{j=1}^{3} U_{i j} h_{i} h_{j} a_{i}^{*} a_{i}^{*}\right)$.

TABLE III
Selected Cation-Oxygen Distances up to $3.0 \AA$ In CuTeO_{3}-II

$$
\begin{aligned}
& \mathrm{Cu}-\mathrm{O}(1)=1.977(3) 0.43 \\
& -\mathrm{O}\left(1^{\prime}\right)=1.977(4) 0.43 \\
& -O(2)=1.921(4) 0.51 \\
& -\mathrm{O}(3)=1.946(4) 0.47 \\
& -\mathrm{O}\left(3^{\prime}\right)=2.427(4) 0.13 \\
& \Sigma(s)=1.97 \\
& \Sigma(s)=3.84 \\
& \Sigma(s) \mathrm{O}(1)=1.93 \\
& \Sigma(s) O(2)=1.88 \\
& \Sigma(s) \mathrm{O}(3)=2.00
\end{aligned}
$$

Note. The bond valences (s) are calculated according to Brown and Wu (II).
dation state IV. Three O atoms (average $\mathrm{Te}-\mathrm{O}=1.897 \AA$) form the base and the Te atom the apex of the trigonal pyramidal
TeO_{3} group. Including the fourth and the fifth O atom neighbors within the coordination sphere ($\mathrm{Te}-\mathrm{O}=2.43$ and $2.80 \AA$), the polyhedron may be described as a distorted octahedron, with one corner vacant. Next neighbors have $\mathrm{Te}-\mathrm{O}>3.0 \AA$ and are excluded from discussion.

The $\mathrm{Cu}_{2} \mathrm{O}_{6}$ and TeO_{3} groups are connected by common O atom corners to a framework structure. A projection of this structure is given in Fig. 1. For both cations, $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Te}(\mathrm{IV})$, the coordination polyhedra are in agreement with crystal chemical experience (cf. for $\mathrm{Cu}(12-14)$ and for Te (3)).

The coordination polyhedra for $\mathrm{CuTeO}_{3}{ }^{-}$ II are quite similar to those determined for the compound $\mathrm{CuTeO}_{3}-\mathrm{I}$. For comparison the calculated coordination numbers of all atoms (15,16) and the volumes of the space-filling polyhedra together with their

Fig. 1. The crystal structure of $\mathrm{CuTeO}_{3}-\mathrm{II}$ in a projection parallel to z. For clearness the $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Te}-\mathrm{O}$ distances of the second sphere are not drawn. The angles within the two different coordination polyhedra are given in degrees.

TABLE IV
Data for Coordination and Space-Filling Polyhedra (based on $r_{\mathrm{Cu}_{u}}: r_{\mathrm{Te}}: r_{\mathrm{o}}=1: 1: 1$)

Atom	$\mathrm{CuTeO}_{3}-\mathrm{I}$						Atom	CuTeO_{3}-II					
	a	b	c	d	e	f		a	b	c	d	e	f
Cu	4.45	4.56	9	7	6	12.44	Cu	4.83	4.63	14	9	7	11.81
$\mathrm{Te}(1)$	6.50	4.98	12	10	10	13.13	Te	5.52	4.64	15	13	9	14.24
$\mathrm{Te}(2)$	6.16	4.83	15	13	10	15.18	$\mathrm{O}(1)$	5.10	4.83	16	14	12	14.12
$\mathrm{O}(1)$	5.05	4.95	14	14	11	13.38	$\mathrm{O}(2)$	5.72	4.63	19	18	14	16.56
$\mathrm{O}(2)$	5.18	4.56	17	16	15	17.39	$\mathrm{O}(3)$	5.65	4.80	14	13	12	13.81
O(3)	5.33	5.20	12	12	12	12.06							
O(4)	6.01	5.08	19	17	13	14.18							

Note. These calculations were performed with the program system "Kristallchemie" (18).
Coordination number refers to Hoppe (15) (a) and O'Keeffe (16) (b). Total number of faces (n.o.f.) in the space-filling polyhedra (c); n.o.f. $>1 \%$ of greatest face (d); n.o.f. $>10 \%$ of greatest face (e). Volume of the single polyhedron in \AA^{3} (f).
number of faces are given for both compounds (Table IV). For comparable magnitudes these values are within the same

TABLE V
X-Ray Powder Diffraction Data of CuTeO_{3}-II

$h k l$	$d_{\text {hkl }}$	$I_{\text {calc }}$	$I_{\text {obs }}$	$h k l$	$d_{\text {hki }}$	$I_{\text {calc }}$	$I_{\text {obs }}$
011	4.68	13	10	04	2.13	16	20
020	4.55	9	10	032	2.12	5	
110	4.51	3	5	140	2.09	13	
101	3.75	6		21-2	2.00	24	30
11-1	3.73	100	100	013	1.94	3	
021	3.61	3		23-1	1.91	20	20
111	3.47	53	40	10-3	1.91	4	
120	3.42	48	40	212	1.84	20	20
12-1	3.04	54	60	231	1.84	17	
121	2.90	53	50	12-3	1.76	18	10
012	2.82	45	50	05	1.74	5	
031	2.70	50	40	240	1.71	15	10
200	2.60	39	70	31 1	1.67	5	
11-2	2.57	30		123	1.67	14	15
022	2.49	3		24-1	1.67	4	
13-1	2.44	11	5	033	1.66	4	
112	2.40	18	10	241	1.62	7	10
131	2.36	14	5	320	1.62	5	
040	2.28	4		311	1.60	4	
122	2.18	6		32-1	1.60	6	5

Note. Debye-Scherrer geometry. CuKa radiation (19). The calculated intensities are listed for $I_{\text {calc }} \geq 3$ and $d_{h k l}>1.60 \AA$.
range and show only minor differences. Reasons for these minor differences are the irregularities of the coordination polyhedra, caused by the Jahn-Teller effect for Cu and by the lone-pair electrons for Te .

The connection of the coordination polyhedra is quite different in these two compounds. In both cases two CuO_{4} "squares" are connected via a common $\mathrm{O}-\mathrm{O}$ edge to $\mathrm{Cu}_{2} \mathrm{O}_{6}$ groups. In CuTeO_{3}-I these groups are combined to chains parallel to [100] (over common O atom corners; $\mathrm{Cu}-\mathrm{O}<$ $2.0 \AA$), whereas in $\mathrm{CuTeO}_{3}-\mathrm{II}$ no further connection of the $\mathrm{Cu}_{2} \mathrm{O}_{6}$ groups by $\mathrm{Cu}-\mathrm{O}<$ $2.0 \AA$ is given. Although the two copper tellurites show different connections of the coordination polyhedra, it seems important to mention that the two compounds have the same specific gravity within limits of error, i.e., 5.637 for $\mathrm{CuTeO}_{3}-\mathrm{I}$ and 5.629 g . cm^{-3} for $\mathrm{CuTeO}_{3}-\mathrm{II}$.

To help with identification, Table V lists the observed and calculated X-ray powder patterns for CuTeO_{3}-II.

Acknowledgments

The author thanks Prof. Dr. J. Zemann (Vienna) for helpful discussions. It is a pleasure to extend apprecia-
tion to Mr. H. Nowotny (Vienna) for an introduction in computation facilities with the program "Kristallchemie." The synthesis was supported by the "Hochschuljubiläumsstiftung der Stadt Wien."

References

1. J. Zemann, Z. Kristallogr. 127, 319 (1968).
2. J. Zemann, Monatsh. Chem. 102, 1209 (1971).
3. J. Zemann, Tellurium: 52/A, Crystal chemistry. In "Handbook of Geochemistry" (K.-H. Wedepohl, Ed.), Vol. II/4 Springer, Berlin/Heidelberg/ New York (1974).
4. F. Pertlik and J. Zemann, Österr. Akad. Wiss. Math-naturw. Kl. Anz. 108, 175 (1971).
5. O. Lindqvist, Acta Chem. Scand. 26, 1423 (1972).
6. J. Moret, É. Philippot, and M. Maurin, C.R. Acad. Sci. Paris C 269, 123 (1969).
7. E. M. Spiridonov, Dokl. Akad. Nauk. SSSR 253, 1448 (1980) [in Russian].
8. K. Hanke, V. KupČik, and O. Lindqvist, Acta Crystallogr. B 29, 963 (1973).
9. S. A. Williams, Mineral. Mag. 43, 91 (1979).
10. "International Tables for X-Ray Crystallography," Vol. IV. Kynoch, Birmingham (1974).
11. I. D. Brown and K. K. Wu, Acta Crystallogr. B 32, 1957 (1976).
12. J. Zemann. Fortschr. Mineral. 39, 59 (1961).
13. J. Zemann, Copper: 29/A, Crystal chemistry. In "Handbook of Geochemistry" (K.-H. Wedepohl, Ed.), Vol. II/3. Springer, Berlin/Heidelberg/New York (1972).
14. A. F. Wells, "Structural Inorganic Chemistry" 5th ed. Oxford Univ. Press (Clarendon), Oxford (1984).
15. R. Hoppe, Angew. Chem. 82, 7 (1970).
16. M. O'Keeffe. Acta Crystallogr. A 35, 772 (1979).
17. W. H. Zachariasen, Acta Crystallogr. 23, 558 (1967).
18. H. Nowotny and E. Zobetz, "Kristallchemie: Program for Solving Geometrical Problems in Crystal Structures." Unpublished (1982).
19. H. Boller. "Pulvrot: Program for Powder Diffraction Data." Unpublished (1978).
